7. 案例:探究用户对物品类别的喜好细分降维

数据如下:
order_products__prior.csv:订单与商品信息
字段:order_id, product_id, add_to_cart_order, reordered
products.csv:商品信息
字段:product_id, product_name, aisle_id, department_id
orders.csv:用户的订单信息
字段:order_id,user_id,eval_set,order_number,….
aisles.csv:商品所属具体物品类别
字段: aisle_id, aisle
1 需求


2 分析
1.获取数据
2.数据基本处理
2.1 合并表格
2.2 交叉表合并
2.3 数据截取
3.特征工程 — pca
4.机器学习(k-means)
5.模型评估
sklearn.metrics.silhouette_score(X, labels)
计算所有样本的平均轮廓系数
X:特征值
labels:被聚类标记的目标值
3 完整代码
1.获取数据
2.数据基本处理
2.1 合并表格
2.2 交叉表合并
2.3 数据截取
3.特征工程 — pca
4.机器学习(k-means)
5.模型评估
Last updated