10. 交叉验证,网格搜索
1 什么是交叉验证(cross validation)
交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成4份,其中一份作为验证集。然后经过4次(组)的测试,每次都更换不同的验证集。即得到4组模型的结果,取平均值作为最终结果。又称4折交叉验证。
1.1 分析
我们之前知道数据分为训练集和测试集,但是为了让从训练得到模型结果更加准确。做以下处理
训练集:训练集+验证集
测试集:测试集

1.2 为什么需要交叉验证
交叉验证目的:为了让被评估的模型更加准确可信
问题:那么这个只是对于参数得出更好的结果,那么怎么选择或者调优参数呢?
2 什么是网格搜索(Grid Search)
通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。

3 交叉验证,网格搜索(模型选择与调优)API:
sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)
对估计器的指定参数值进行详尽搜索
estimator:估计器对象
param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
cv:指定几折交叉验证
fit:输入训练数据
score:准确率
结果分析:
bestscore__:在交叉验证中验证的最好结果
bestestimator:最好的参数模型
cvresults:每次交叉验证后的验证集准确率结果和训练集准确率结果
4 鸢尾花案例增加K值调优
使用GridSearchCV构建估计器
然后进行评估查看最终选择的结果和交叉验证的结果
最终结果
Last updated