6. 案例:鸢尾花种类预测--数据集介绍
本实验介绍了使用Python进行机器学习的一些基本概念。 在本案例中,将使用K-Nearest Neighbor(KNN)算法对鸢尾花的种类进行分类,并测量花的特征。
本案例目的:
遵循并理解完整的机器学习过程
对机器学习原理和相关术语有基本的了解。
了解评估机器学习模型的基本过程。
1 案例:鸢尾花种类预测
Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。关于数据集的具体介绍:

2 scikit-learn中数据集介绍
2.1 scikit-learn数据集API介绍
sklearn.datasets
加载获取流行数据集
datasets.load_*()
获取小规模数据集,数据包含在datasets里
datasets.fetch_*(data_home=None)
获取大规模数据集,需要从网络上下载,函数的第一个参数是data_home,表示数据集下载的目录,默认是 ~/scikit_learn_data/
2.1.1 sklearn小数据集
sklearn.datasets.load_iris()
加载并返回鸢尾花数据集

2.1.2 sklearn大数据集
sklearn.datasets.fetch_20newsgroups(data_home=None,subset=‘train’)
subset:'train'或者'test','all',可选,选择要加载的数据集。
训练集的“训练”,测试集的“测试”,两者的“全部”
2.2 sklearn数据集返回值介绍
load和fetch返回的数据类型datasets.base.Bunch(字典格式)
data:特征数据数组,是 [n_samples * n_features] 的二维 numpy.ndarray 数组
target:标签数组,是 n_samples 的一维 numpy.ndarray 数组
DESCR:数据描述
feature_names:特征名,新闻数据,手写数字、回归数据集没有
target_names:标签名
2.3 查看数据分布
通过创建一些图,以查看不同类别是如何通过特征来区分的。 在理想情况下,标签类将由一个或多个特征对完美分隔。 在现实世界中,这种理想情况很少会发生。
seaborn介绍
Seaborn 是基于 Matplotlib 核心库进行了更高级的 API 封装,可以让你轻松地画出更漂亮的图形。而 Seaborn 的漂亮主要体现在配色更加舒服、以及图形元素的样式更加细腻。
安装 pip3 install seaborn
seaborn.lmplot() 是一个非常有用的方法,它会在绘制二维散点图时,自动完成回归拟合
sns.lmplot() 里的 x, y 分别代表横纵坐标的列名,
data= 是关联到数据集,
hue=*代表按照 species即花的类别分类显示,
fit_reg=是否进行线性拟合。

2.4 数据集的划分
机器学习一般的数据集会划分为两个部分:
训练数据:用于训练,构建模型
测试数据:在模型检验时使用,用于评估模型是否有效
划分比例:
训练集:70% 80% 75%
测试集:30% 20% 25%
数据集划分api
sklearn.model_selection.train_test_split(arrays, *options)
x 数据集的特征值
y 数据集的标签值
test_size 测试集的大小,一般为float
random_state 随机数种子,不同的种子会造成不同的随机采样结果。相同的种子采样结果相同。
return 测试集特征训练集特征值值,训练标签,测试标签(默认随机取)
Last updated